Blog Archive

Nông nghiệp Việt Nam

Trồng lúa

Sunday, September 11, 2016

GS Bùi Chí Bửu. Ứng dụng CNSH trong cải tiến lúa.


ỨNG DỤNG CÔNG NGHỆ SINH HỌC TRONG CẢI TIẾN GIỐNG CÂY TRỒNG CHỐNG CHỊU
ĐIỀU KIỆN BẤT LỢI CỦA MÔI TRƯỜNG
GS. Bùi Chí Bửu

Diện tích đất trồng trọt trên thế giới chiếm 10% trong tổng số 13 tỉ ha. Trong đó, 11,5 triệu ha đất đang được canh tác được xem như không thuận lợi cho nông nghiệp (FAO 2002). Hầu hết đất trồng trọt được xếp vào nhóm dưới mức tối hảo cho cây trồng. Bên cạnh những thiệt hại do sâu bệnh gây ra, người ta ước đoán có 70% tiềm năng về năng suất bị mất đi do điều kiện bất lợi của môi trường, ngay cả trong những quốc gia có nền nông nghiệp phát triển (FAO 2002)
Những thiệt hại do sâu bệnh gây ra được gọi với thuật ngữ "thiệt hại có tính chất sinh học" (biotic stresses). Những thiệt hại do điều kiện bất lợi của môi trường, thí dụ như khô hạn, ngập úng, mặn, phèn, nóng, lạnh, v.v.., được gọi với thuật ngữ "thiệt hại có tính chất không phải sinh học (abiotic stresses)

Sự khan hiểm về nước tưới phục vụ cho nông nghiệp đã được báo động trong nhiều hội nghị khoa học của thế giới gần đây. Do sự thay đổi khí quyển với hiệu ứng nhà kính, nhiệt độ của khí quyển ấm dần lên, băng tan ở hai cực sẽ tạo sự ngập lụt ở các vùng đất thấp (như đồng bằng sông Cửu Long). Như vậy, lũ lụt và sự xâm nhập mặn sẽ trở thành vấn đề lớn trong nhiều năm sau. Với tầm quan trọng như vậy, người ta đã hoạch định một thứ tự ưu tiên trong đầu tư nghiên cứu tính chống chịu khô hạn và chống chịu mặn trên toàn thế giới, trong lĩnh vực cải tiến giống cây trồng, sau đó là tính chống chịu lạnh, chống chịu ngập úng, chống chịu đất có vấn đề (acid, thiếu lân, độ độc sắt, độ độc nhôm, thiếu kẽm, Mg, Mn và một số chất vi lượng khác như Cu,...)

1-1. KHÔ HẠN

Khô hạn sẽ là yếu tố quan trọng bậc nhất ảnh hưởng đến an toàn lương thực của thế giới, và điều này đã từng xảy ra trong qúa khứ. Tài nguyên nước phục vụ cho nông nghiệp không phải vô tận, bên cạnh đó là áp lực dân số kèm theo sự phát triển đô thị, sự kiện ấy sẽ làm gia tăng nhu cầu nước phục vụ dân sinh và cho phát triển công nghiệp. Do đó, sự khan hiếm nước phục vụ nông nghiệp là vấn đề đang được dự báo rất cấp thiết trên qui mô toàn cầu. Hiện nay, nước phục vụ nông nghiệp chiếm 70% nguồn nước phục vụ dân sinh của toàn thế giới.

Muốn sản xuất được 1 kg thóc, người ta phải cần 5000 lít nước. Nhiều quốc gia như Ai Cập, Nhật Bản, úc đã cố gắng cải tiến nhằm nâng cao hiệu qủa sử dụng nước, giảm xuống 1,3 m3 / kg thóc. Ở Trung Quốc, các nhà chọn giống đang thử nghiệm mô hình cây lúa canh tác trên đất thoáng khí, với thuật ngữ "aerobic rice", không phải như cây lúa ngập nước truyền thống. Bộ rễ lúa sẽ phát triển như cây trồng cạn, với chế độ tưới cải tiến, nhằm tiết kiệm nước tối đa.

Hạn hán được xem như một trong những hậu qủa nghiêm trọng do sự suy giảm của nguồn nước. Do vậy, người ta đã quy định ngày 22 tháng 3 hàng năm là Ngày NướcThế Giới. Hiện nay, mức đảm bảo nước trung bình cho một người trong một năm đã giảm từ 12.800 m3 / người vào năm 1990 xuống còn 10.900 m3 / người vào năm 2000 và có khả năng chỉ còn khoảng 8.500 m3 / người vào năm 2020. Theo Hội Nước Quốc tế (IWRA), tiêu chuẩn công nhận quốc gia có mức bảo đảm nước cho một người < 4000 m3 / năm, được xem như thiếu nước, và < 2000 m3 / năm, thuộc loại hiếm nước. Kết qủa đánh giá của chương trình KC12 ở Việt Nam cho thấy: tổng lượng nước cần dùng cả năm của nước ta chiếm 8,8% tổng lượng dòng chảy, năm 1999, tăng lên 12,5% trong năm 2000, và được dự báo sẽ tăng 16,5% vào năm 2010. Tổng lượng nước phục vụ tưới trong nông nghiệp của Việt Nam: 41 km3 năm 1985, tăng lên 46,9 km3 năm 1999, và 60 km3 năm 2000. Lượng nước cần dùng cho mùa khô sẽ tăng lên 90 km3 vào năm 2010, chiếm 54% tổng lượng nước có thể cung cấp. Xét trên qui mô toàn cầu, nhiệt độ trái đất nóng lên sẽ có khả năng làm mất 1/3 nguồn nước đang sử dụng của thế giới trong 20 năm tới, như dự báo của Liên Hợp Quốc. Khủng hoảng thiếu nước trên thế giới hiện nay được nhận định không chỉ do nước qúa ít so với nhu cầu mà còn do quản lý nguồn nước qúa kém. Hàng năm có 2,2 triệu người chết do các căn bệnh liên quan đến nguồn nước ô nhiễm và điều kiện vệ sinh kém, với 12.000 km3 nước sạch hiện bị ô nhiễm nghiêm trọng. Do đó, từ năm 2000 trở đi, các dự án quốc tế về nông nghiệp thuộc hệ thống CGIAR đã nhấn mạnh đến giống cây trồng chống chịu khô hạn, nước sạch cho nông thôn, đô thị, xem những nội dung này là một ưu tiên đặc biệt.

Các trung tâm nghiên cứu trên thế giới được FAO phân công phụ trách những cây trồng liên quan đến chống chịu khô hạn là:

              IITA phụ trách nghiên cứu đậu cowpea ở Sahel, đậu tương và ngô ở Dry Savana
              ICRISAT phụ trách nghiên cứu cao lương, kê, đậu chickpea, đậu phụng và đậu pigeon pea ở Ân Độ và Sahel
              CIAT phụ trách nghiên cứu các loại đậu ở Mexico, Trung Mỹ và Đông bắc Brazil
              IRRI phụ trách nghiên cứu lúa ở Bangladesh, Đông An Độ, Thái Lan và Indonesia
              CIP phụ trách nghiên cứu khoai tây ở Trung Quốc. An Độ, Nam Phi, Kazakhstan, Afghanistan
              CIMMYT phụ trách nghiên cứu lúa mì ở Trung Á, Tây Á, Bắc Phi, cây ngô ở vùng cận Sahara

1-2. ĐT MẶN

Đất trồng trọt bị ảnh hưởng mặn ước khoảng 380 triệu ha, chiếm 1/3 đất trồng trên toàn thế giới. Nó thường đi kèm theo hiện tượng đất kiềm và ngập nước (Gale 2002). Trong đó, 60 triệu ha là đất mặn do thủy cấp đưa mặn lên đất mặt, người ta thường dùng thuật ngữ "inland salinity". Hiện tượng này do thiếu nước tưới, làm đất trở nên mặn hóa ở Châu Á, Châu Phi và Nam Mỹ.
Các trung tâm nghiên cứu trên thế giới được FAO phân công phụ trách những cây trồng liên quan đến chống chịu mặn là:

              IRRI phụ trách nghiên cứu lúa vùng ven biển ở Bangladesh, Orissa, Việt Nam, Philippines, vùng mặn trong đất liền ở châu thổ sông Hằng (Ân Độ) và vùng Đông bắc Thái Lan
              ICARDA phụ trách nghiên cứu lúa ở Trung Á 1-3. ĐÁT ACID & ĐẤT BẠC MÀU

1.3. ĐẤT ACID VÀ ĐẤT BẠC MÀU

Đất acid chiếm 40% diện tích đất trồng trọt trên toàn thế giới, với pH < 5, trong đó yếu tố hạn chế chủ yếu cho cây trồng là hàm lượng cao của nhôm và manganese. Vấn đề này đặc biệt quan trọng tại Nam Mỹ (380 triệu ha), bao gồm khu vực châu thổ sông Amazone. Yếu tố hạn chế do hàm lượng sắt cao, gây độc cho cây được ghi nhận ở Tây Phi. Đất phèn ở Việt Nam và Thái Lan thuộc nhóm khác, rất đặc biệt, bởi vì độc chất thuộc hợp chất sulfate sắt, nhôm, cộng thêm hiện tượng thiếu lân, pH thấp, và rất giàu hữu cơ.

Các trung tâm nghiên cứu trên thế giới được FAO phân công phụ trách những cây trồng liên quan đến chống chịu đất acid và bạc màu là:

              IITA phụ trách nghiên cứu đậu cowpea, đậu tương ở vùng ròng ẩm ướt
              CIAT phụ trách nghiên cứu các loại đậu ở Châu Phi, Châu Phi La Tinh
              IRRI phụ trách nghiên cứu lúa ở Bangladesh, Indonesia, Philippines
              CIMMYT phụ trách nghiên cứu ngô ở Châu Mỳ La Tinh, Đông Nam Á và Châu Phi, phụ trách nghiên cứu lúa mì ở CWANA

1-4. NHIỆT Độ LẠNH & NHIỆT ĐỘ NÓNG

Nhiệt độ qúa nóng hoặc qúa lạnh sẽ làm hạn chế tiềm năng phát triển của cây trồng. Hiện nay, 70% vùng đất trồng khoai tây của thế giới có khả năng bị rủi ro do nhiệt độ lạnh. Cây lúa trồng ở Hàn Quốc, Nepal thường bị thiệt hại do lạnh

Các trung tâm nghiên cứu trên thể giới được FAO phân công phụ trách những cây trồng liên quan đến chống chịu nhiệt độ bất thuận là:

              CIP phụ trách nghiên cứu khoai tây chịu lạnh ở Andes, chịu nóng ở Nam Á
              ICARDA phụ trách nghiên cứu lúa mạch, đậu chickpea, cây gai chịu lạnh
              IITA phụ trách nghiên cứu đậu cowpea chịu nóng ở Sahel

1-5. BẢN ĐỒ GEN & SỰ PHÁT TRIỂN MARKER PHỤC VỤ PHÂN TÍCH DI TRUYỀN

Bản đồ gen là yêu cầu trước hết cho phân tích di truyền tính trạng chống chịu các thiệt hại không phải sinh học, đồng thời nó cũng là tiêu chuẩn trong chọn giống cây trồng hiện đại. Nhóm Tư vấn về Nghiên Cứu Nông Nghiệp Quốc Te (CGIAR) của FAO đã chỉ đạo các Viện, Trung Tâm trực thuộc, hoàn thành các bản đồ ở mức độ phân tử đối với những loại cây trồng chính. Trong đó, có những công trình mang tính chất hợp tác quốc tể rất rộng như: bản đồ gen cây lúa, lúa mì, khoai tây có thế được sử dụng phổ biến. Những bản đồ căn bản đối với cây trồng có mức độ phổ biến thấp cũng được xem xét, và được sự phân công của CGIAR, tuy rằng chúng có tính chất quốc tế hóa rất thấp. Chỉ còn một vài loài chưa được xây dựng bản đồ. Bản đồ di truyền (genetic map) còn được hiểu như bản đồ liên kết (linkage map) giữa marker và gen mục tiêu. Bên cạnh đó, người ta đã thực hiện những hợp phần quan trọng để xây dựng bản đồ vật lý (physical map) của những gen này. Kỹ thuật xây dựng bản đồ đối với tính trạng số lượng (QTL) thường có rất ít thông tin về sự kiểm soát của gen, bởi vì nó dựa trên những giả định có tính chất toán học. Nhưng nó vô cùng quan trọng, vì hầu như các tính trạng chống chịu với "stress" đều yêu cầu "QTL mapping". Người ta cần phải quét từ đầu đến cuối bộ genome với những marker bao phủ toàn bộ các nhiễm sắc thế, với mật độ trung bình l0cM giữa 2 marker. Thông qua đó, người ta xác định những khu vực giả định có chứa các gen điều khiển tính trạng số lượng mà ta đang nghiên cứu. Người ta phải dựa trên cơ sở biến động của tính trạng kết hợp với sự thay đổi của marker tương ứng. Mật độ marker càng dày đặc, càng tốt cho sự giả định, với mức độ chính xác cao, trên một quần thể con lai nào đó đang được sử dụng để phân tích di truyền. Những vị trí được xác định như vậy vô cùng cần thiết cho chương trình chọn giống nhờ marker (MAS = marker-aided selection) đối với tính trạng chống chịu, và rất cần thiết cho kỹ thuật cloning trên cơ sở bản đồ di truyền (map-based cloning) của những gen thuộc về QTL

Những marker được ứng dụng trong chọn giống cây trồng phải liên kết chặt với gen mục tiêu, trên cơ sở bản đồ di truyền phân tử. Hiện nay, marker có hiệu qủa đáng tin cậy là "microsatellite" viết tắt SSR. Người ta đang chuẩn bị đưa vào sử dụng rộng rãi marker SNP trong vài năm tới (chữ SNP được viết tắt từ thuật ngữ "single nucleotide polymorphisms" = các đa hình nucleotide đơn). Đối với cây lúa, thuận lợi lớn nhất trong ứng dụng marker là bản đồ genome của nó đã cơ bản được giải mã, marker không còn là vấn đề. Theo công trình của Goff và 30 tác giả khác trong năm 2002, chuồi ký tự của SSR và SNP hiện được thiết kế ước khoảng 40.000 marker, kế cả những phân tử mất đoạn, hay xen đoạn. Đây là những chuỗi mã đồng nhất ở mức độ 1%, mật độ 24 / mỗi gen (Gale 2002)

1-6. CƠ CHÉ SINH LÝ HỌC VÀ DI TRUYỀN HỌC ĐỐI VỚI HIỆN TƯỢNG CHỐNG CHỊU STRESS

Cơ chế sinh lý giải thích hiện tượng đáp ứng của cây trồng đối với stress, và nhằm mục đích cải tiến cấu trúc, hoạt động sinh lý, sinh hóa của cây, giúp cây thoát khỏi, hoặc né tránh, hoặc chống chịu sự thiệt hại do stress gây ra. Có hai phương pháp liên quan đến cải tiến giống cây trồng chống chịu stress:
(1)      
    Phương pháp dựa trên kinh nghiệm (empirical approach) được bắt đầu từ việc khai thác biến dị di truyền, kết hợp với nguồn vật liệu cung cấp gen chống chịu tốt nhất của giống cây trồng, hoặc của loài hoang dại. Nguồn vật liệu lý tưởng nhất đối với tính trạng chống chịu được phân lập và xem xét gen điều khiển tính chống chịu thông qua phân tích QTL đối với quần thể dòng con lai đang phân ly, trên hai kiểu hình chống chịu cao và chống chịu thấp. Mặc dù cơ chế sinh lý vẫn được xem là cơ chế chính được ưu tiên nghiên cứu, nhưng sự di truyền tính trạng chống chịu này đến giống cây trồng mới là một tiến trình vô cùng cần thiết, với yêu cầu chọn lọc khắt khe và tích lũy những alen có lợi

(1) Phương pháp lai tạo giống có kiểu hình lý tưởng (ideotype breeding approach), trong đó đặc điểm về hình thái học và sinh lý học đều phải có khả năng tham gia vào mục tiêu cải tiến giống trong điều kiện bị stress. Gen mục tiêu từ giống cây trồng và từ loài hoang dại đều được quan tâm khai thác, để chuyển nó vào giống cây trồng mới.

Khi thực hiện hai phương pháp này, người ta cò phải sử dụng những kỹ thuật lai, kỹ thuật chồng gen kháng nhờ marker phân tử, nhằm xác định những alen có lợi.
Trường hợp stress là khô hạn, mặn và lạnh, những hiện tượng này có chức năng về sinh lý thực vật liên quan với nhau, trên cơ sở điều tiết áp suất thẩm thấu của tế bào. Nhiều chiến lược nghiên cứu nhằm cải tiến tính chống chịu này mang tính chất đa ứng dụng. Chúng bao gồm hiện tượng điều tiết áp suất thẩm thấu ở rễ, lá, nhằm duy trì nước, loại bỏ các yếu tố rào cản có tính chất kỵ nước (hydrophobic barriers) trong rễ và lá, cải tiến sự thông thương mạch dẫn, nhằm thúc đấy sự di chuyến nước trong cây. Những cơ chế tránh né (avoidance), thoát (escape), và chống chịu (tolerance) có nét rất giống nhau đối với khô hạn, mặn và lạnh. Thí dụ như cải tiến tính trạng rút ngắn thời gian từ gieo đến trỗ, tính trạng rễ phát triển mọc sâu hơn trong đất, tính trạng nhạy cảm trong phản ứng co nguyên sinh của tế bào khi gặp stress.

Di truyền tính chống chịu đối với stress không phải sinh học thường được kiểm soát bởi đa gen và rất phức tạp, các gen kiểm soát tính chống chịu có thể trùng lắp nhau đối với những stress khác nhau. Trong genome của lúa mì và lúa mạch, người ta nhận thấy các ảnh hưởng di truyền kiếm soát sự đáp ứng của cây đối với khô hạn, mặn và lạnh nằm trên cùng bản đồ di truyền nhiễm sắc thế tương đương. Có ít nhất 10 QTL được tìm thấy đối với từng tính trạng chống chịu này và chúng nằm chồng lên nhau tại một số vùng của nhiễm sắc thể.

Trường hợp sử dụng "phương pháp dựa trên kinh nghiệm" đối với tính trạng chống chịu độ độc nhôm, người ta ghi nhận kỹ thuật thanh lọc nhôm thường chỉ cải tiến sự phát triển của rễ và chồi trong môi trường dinh dưỡng Yoshida có chứa Al, ở điều kiện pH thấp, và đó là một hiện tượng di truyền rất phức tạp. Những gen kiểm soát tính trạng chống chịu này thường tập trung tại một locus có giá trị đóng góp vào tần suất biến dị di truyền cao nhất. Những kết qủa như vậy xác định hướng ưu tiên của MAS (chọn giống nhờ marker phân tử), với sự cô lập gen có tính chất quyết định (key gene) thông qua cả hai biện pháp hỗ trợ, đó là "kỹ thuật cloning" và "sản xuất các dòng đẳng gen" (Gale 2002). Sự cô lập gen (gene isolation) và kiến thức về chuồi mã của gen có thể được xem là những bước phát triển có tính chất quyết định làm rõ thêm cơ chế di truyền tính chống chịu này.

Không phải tất cả các tính trạng chống chịu stress do đa gen điều khiển. Một vài tính trạng chống chịu với stress được thể hiện do sự điều khiển của gen chủ lực. Thí dụ như tính trạng chống chịu ngập của cây lúa ở vùng Đông Nam Á, nơi có diện tích canh tác bị ảnh hưởng của lũ lụt là 25 triệu ha, do lũ đến bất ngờ làm cây lúa bị ngập hoàn toàn (7 đến 10 ngày), gen điều khiển Sub1 định vị tại một locus giúp cho cây lúa chống chịu được ngập và phục hồi bình thuờng

Khả năng của các loài hoang dại có quan hệ gần với cây trồng được đánh giá rất cao, trong chiến lược du nhập gen mục tiêu từ loài hoang dại vào loài cây trồng, nhằm gia tăng tính chống chịu một cách có hiệu qủa. Gen chống chịu mặn được ghi nhận từ một loài hoang dại Porteresia coarctata của Ân Độ, Sri Lanka có thể chuyển vào lúa trồng. Gen chống chịu mặn của Thinopyrum bessabaricum giúp nó phát triển trong điều kiện mặn 250 mM NaCl, có thể được sử dụng trong chương trình cải tiến cây lúa mì. Đối với tính trạng chống chịu độ độ nhôm, loài cỏ lông tây, Brachiaria decnmbens, thuộc vùng nhiệt đới, được xem là nguồn vật liệu trong chương trình cải tiến giống lúa mì ôn đới, giống ngô ôn đới (Gale 2002). Chiến lược cải tiến giống như vậy có tên là "crop replacement".

1-7. TIN Đ CẢI TIẾN GIỐNG CHỐNG CHỊU (chậm nhưng kh thi)

Hiện nay, tiến độ cải tiến giống chống chịu đối với stress rất chậm bởi chúng ta chưa có sự hợp tác nghiên cứu một cách hiệu qủa giữa nhà sinh lý thực vật, sinh hóa và nhà di truyền. Một vài tiến bộ được ghi nhận trong cải tiến giống chống chịu (tolerance) hoặc tránh né (avoidance) khô hạn, mặn, độ độc nhôm. Những hiểu biết về cơ chế chống chịu cho từng đối tượng còn qúa hạn chế.

Những giống cây trồng được các cơ quan thuộc hệ thống CGIAR quan tâm đầu tư nghiên cứu và phát triển:

              Giống ngô nhiệt đới chống chịu đất acid: Corpoica H-108, H-lll phát triển tại Colombia, giống Pool 25 tại Brazil, giống ZM421, 521 và 621 vừa được công nhận cho phát triển tại Nam Phi, nó còn chống chịu hiện tượng đất nghèo N và khô hạn giữa vụ trồng. Các giống này do CYMMIT lai tạo và hợp tác với các địa phương nói trên
              Giống lúa chống chịu mặn PSBRc 84, 86 và 88 phát triển tại Bangladesh, trong đó PSBRc 88 có phẩm chất gạo tốt. Giống lúa này do IRRI lai tạo và hợp tác với các quốc gia trong mạng lưới
              Giống chuối chống chịu hạn FHIA 01 do INIBAP lai tạo và chọn lọc, hiện phát triển tại Honduras, Tanzania và 50 quốc gia khác
              Giống khoai tây chống chịu nóng Unica phát triển tại Peru do CIP lai tạo và chọn lọc

Tiến độ cải tiến giống cây trồng phục vụ mục tiêu chống chịu này hiện gặp trở ngại do tính trạng năng suất cao và tính trạng chống chịu có khả năng tương hợp thấp. Năng suất cao trong điều kiện bị stress cũng không tương hợp với năng suất cao trong điều kiện bình thường. Điều này cho thấy cần có một chương trình cải tiến giống độc lập nhằm tạo ra những giống có yêu cầu đặc biệt, đối với từng loại stress riêng biệt. Chúng ta vẫn chưa hiểu rõ: liệu có sự đối kháng giữa năng suất và tính chống chịu hay không? Gen điều khiển năng suất cao trong điều kiện bị stress và trong điều kiện bình thường cùng một nhóm như nhau. Nhưng sự tương tác giữa kiểu gen và môi trường (GxE) vẫn còn là điều chưa được hiểu một cách đầy đủ. Với sự phát triển của công nghệ sinh học, đặc biệt là kỹ thuật di truyền, người ta đang ưu tiên nghiên cứu gống chống chịu khô hạn và chống chịu mặn, với qui mô hợp tác quốc tể rất tích cực.

1-8. KỸTHUẬT THANH LỌC CÓ TÍNH KHẢ THI VỚI QUI MÔ LỚN

Việc đánh giá kiểu hình (phenotyping) các dòng con lai đối với các stress đòi hỏi chúng ta không ngừng hoàn thiện các kỹ thuật thanh lọc rẻ tiền, chính xác, dễ ứng dụng khi thực hiện với số lượng lớn của con lai.

Thanh lọc ngoài đồng ruộng thường gặp những vấn đề phát sinh do các yếu tố môi trường mà chúng ta chưa kiểm soát được, chúng có thế ảnh hưởng làm sai lệch kết qủa thanh lọc. Muốn khắc phục hạn chế này, người ta cố gắng cải tiến phương pháp bố trí thí nghiệm đối với từng vấn đề stress khác nhau

Thanh lọc trong phòng thí nghiệm hoặc trong nhà lưới với các yếu tố tham gia thống nhất, có kiểm soát, thường bị hạn chế do qui mô bé, và rất tốn kém. Hơn nữa cơ chế chống chịu in vitro và cơ chế chống chịu ngoài đồng thường không thống nhất, thí dụ như tính chống chịu mặn, tính chống chịu khô hạn. Trường hợp thanh lọc với độ độc do sắt trong đất phèn, chúng ta rất khó kiếm soát sự chuyến đôi từ Fe++ sang Fe+++ trong môi trường dinh dưỡng. Trường hợp thanh lọc tính trạng chống chịu ngập hoàn toàn, chúng ta phải kiểm soát độ đục của nước sao cho gần giống như điều kiện ngoài đồng. Trường hợp thí nghiệm tính trạng chống chịu sự thiếu lân, phương pháp bố trí thí nghiệm phải giải quyết được hai vấn đề: (1) cơ chế phát triển trong điều kiện đất có hàm lượng lân ở ngưỡng thấp, có thể những giống nghiên cứu phát triển tốt trong điều kiện này, nhưng không chống chịu sự thiếu lân, (2) cơ chế phát triển trong điều kiện thiếu lân thực sự.

Ứng dụng công nghệ sinh học, người ta đề xuất phương pháp đánh giá kiểu gen (genotyping), với sự trợ giúp của marker phân tử để thanh lọc con lai có gen chống chịu với stress mục tiêu. Marker SSR hiện được khuyến cáo vì hiệu qủa cao, đáng tin cậy, số lượng marker lớn. Vấn đề trở ngại lớn nhất của tính chống chịu với stress là đa gen điều khiển với những giả định QTL. Vì vậy, công việc "Tine mapping" phải được thực liên liên tục nhàm xác định marker đáng tin cậy nhất cho chiến lược MAS (marker-assisted selection) trên cơ sở phân tích với quần thể hồi giao cải tiến của vật liệu bố mẹ đã được chọn lọc cẩn thận.

1-9. GENOME HỌC - NGÀNH HỌC DI TRUYỀN MỚI

Từ năm 1998, người ta bắt đầu làm quen với thuật ngữ "Genomics" (genome học) thông qua chương trình nghiên cứu về genome của người. Trong thực vật, genome của cây Arabidopsis thaliana đã được giải mã cơ bản vào năm 2000. Genome cây lúa đã được công bố giải mã trong năm 2001 và hoàn thiện trong năm 2002 của nhóm nghiên cứu Bắc Kinh (Trung Quốc) và Tsukuba (Nhật Bản) cùng với những thông báo đáng chú ý của Syngenta và Monsanto. Khả năng genome của cây ngô sẽ là mục tiêu tiếp theo được giải mã, ít nhất là tại các vùng trên nhiễm thể tập hợp cao các gen (gene-rich regions) của bộ genome. Công nghệ bao trùm toàn bộ hoạt động của ngành genome học là: (1) đọc chuỗi mã DNA tự động, với khả năng đọc của máy là 2 triệu cặp base một ngày, với số kênh mao dẫn từ 16, đến hơn 98 kênh, và nó đang được tiếp tục cải tiến với tốc độ phát triển cực nhanh (2) microarray và chip sinh học DNA, trong đó 10.000 gen có thể được "scan" trong cùng một lần xem xét, các máy đánh giá kiểu gen tự động có khả năng xét nghiệm 10.000 điểm chẩn đoán DNA trong một ngày. Thực vậy, khả năng kiếm tra toàn bộ genome đối với những marker di truyền, hoặc sự thế hiện gen trên từng chip đơn lẽ là hiện thực trong một tương lai rất gần. Kỹ thuật chuyển nạp gen sẽ đơn giản và dễ dàng hơn nhờ các tiến bộ mới trong công nghệ sinh học, qua đó, việc cải biên di truyền trở nên hiệu qủa hơn đối với mục tiêu cải tiến giống cây trồng, ở góc độ công nghệ có liên quan đến "genomics".

1-10. HIỆN TƯỢNG SYNTENY; GENOMICS CÓ TÍNH CHẤT SO SÁNH

Trong cuối thập kỷ 1990, một sự kiện khoa học quan trọng rất đáng ghi nhớ đó là khám phá thành phần của gen, vị trí thứ tự của gen được ghi nhận có quan hệ rất chặt giữa các loài thực vật khác nhau. Đó là hiện tượng "synteny". Thuật ngữ "synteny" có nguồn gốc từ chữ Hi Lạp, trong đó "syn" có nghĩa là quan hệ với nhau, "taenia" có nghĩa là dãi băng (ribbon)

Thuật ngữ này được dùng trong di truyền để ám chỉ sự hiện diện của hai hoặc nhiều hơn hai loci trên cùng một nhiễm sắc thể. Người ta còn sử dụng thuật ngữ lập bản đồ so sánh (comparative mapping) và xác định gen trên cơ sở "gen phát triển đồng dạng" (homeology- based gene isolation) để minh họa hiện tượng synteny có trong tự nhiên (McCouch 2001). Khái niệm "synteny" được mở rộng trên khái niệm đồng dạng của nhiễm sắc thế tương đồng. Nghiên cứu trên họ Solanacea, Bonierbale và ctv. (1998) đã chứng minh rằng cDNA markers trên 12 nhiễm sắc thể của cà chua và khoai tây có tính chất đồng tuyến (collinear), chúng chỉ khác nhau ở 5 đảo đoạn không ở vị trí trung tâm, trong khi đó, cây ớt có một sự sắp xếp tương đồng nhưng to lớn hơn hai genome này. Trong họ Graminae, người ta nhận thấy chúng có mức độ phát triển có thể được đánh giá cao nhất về hiện tượng synteny, bởi vì sự theo hiện rất rõ ràng của các loài trong họ. Hầu hết các gen trong họ có chức năng được biết hay chưa được biết đều có những mật mã protein tương ứng với các gen của chuồi mã cây lúa. Bản đồ genome của những loài thuộc họ Graminae bao gồm những cây mễ cốc có thế được nối với nhau thành trục đường thắng các gen mục tiêu định vị trên genome (với độ lớn khác nhau, theo vòng tròn đồng tâm). Nếu một gen của một loài được biết về chức năng, người ta có thế dự đoán trên tất cả những loài còn lại.

Chức năng của gen trong điều khiển tính trạng nào đó có thể được dự đoán trong tất cả các cây thuộc nhóm mễ cốc. Sự tương đồng giữa các genome như vậy qui kết những gen lại với nhau trong một giới hạn có thể biết được.

Chính nhờ hiện tượng synteny, việc ứng dụng những công cụ chính của genomics trở nên thuận tiện hơn, từ kết qủa phân tích genome của cây lúa, người ta có thể ứng dụng trực tiếp trong phân tích di truyền genome của lúa mì, lúa mạch, kê, cao lương, và ngô. Bản đồ so sánh thế hệ một đã được công bố đối với cây lúa và tất cả những genome giống như vậy (Gale 2002). Một bộ sưu tập các phân tử "probe" đóng vai trò neo có số bản sao cDNA thấp (anchor probes) đã được sử dụng đế làm ra bản đồ có tính chất so sánh trong các loài khác nhau (# 7 loài) của họ Hoà Bản. Các vùng có gen xếp theo thứ tự được bảo tồn có tính chất vị trí tương ứng với kiểu hình thể hiện ra bên ngoài đã được tư liệu hóa một cách hệ thống, thông qua sự đóng góp của các phân tử "mutant" và những QTL. Tuy nhiên, có rất nhiều trường hợp ngoại lệ thí dụ như marker liên kết không được thấy trên bản đồ ở vị trí dự đoán giữa hai đường thẳng xác định vùng mục tiêu, và đặt ra cho chúng ta nhiều câu hỏi chưa giải thích được. Kilian và ctv. (1997) lần đầu tiên đã cố gắng "clone" một gen trong một loài cây trồng trên cơ sở thông tin về chuồi mã và thông tin có tính chất vị trí (positional) (thuật ngữ chuyên môn gọi đó là "microsynteny"), hiện nay người ta sử dụng thuật ngữ "vùng đồng dạng" (homeologue region) của một genus khác với genus đang nghiên cứu. Cho dù các đoạn tương ứng của nhiễm thế cây lúa mạch (Hordeum vulgare) và cây lúa (Oryza sativa) thể hiện khá rõ nét về tính chất đồng dạng tại vùng mà gen kháng bệnh rỉ sắt của lúa mạch Rpgl định vị, nhưng gen mục tiêu này không hề được tìm thấy ở vùng dự đoán trên genome cây lúa (McCouch 1997).

1-11. ỨNG DỤNG GENOMICS TRONG CẢI TIÉN GIỐNG CÂY TRÒNG CHỐNG CHỊU VỚI STRESS

1-11-1. Thư viện DNA (DNA library)

Nhằm đáp ứng mục tiêu ứng dụng genomics trong cải tiến giống cây trồng chống chịu với stress không phải sinh học, người ta rất quan tâm đến khả năng khai thác hiện tượng “synteny” và genomics có tính chất so sánh, hơn là nội dung đề ra các giải pháp trên cơ sở thiết kế chương trình lai tạo với database khá phong phú (modelling) giống như chương trình lúa dạng hình mới có năng suất vượt trần, bởi vì cơ chế chống chịu vẫn chưa được hiểu rõ ràng. Như vậy, người ta rất cần có một cơ sở vật chất về genome một cách căn bản và đầy đủ. Đó là thư viện các DNA clone. Yêu cầu tối thiểu phải có là (1) bản đồ liên kết gen ở mức độ phân tử trên từng nhiễm sắc thể, (2) một thư viện DNA đủ lớn, (3) một hệ thống chuyển nạp có kha năng mang một số lượng lớn gen mục tiêu chuyến vào các cây được cải biên về di truyền. Bản đồ phải đáp ứng điều kiện phủ kín trên nhiễm thể với 2-3 cM giữa hai marker kế cận, và một số lượng lớn các loci mang tính chất “neo” (anchor). Bản đồ RFLP, EST, SSR, SNP sẽ cung cấp cho chúng ta những so sánh về kết qủa áp dụng để chúng ta lựa chọn. Thư viện DNA sẽ có thể cho hiệu qủa tốt hơn gấp đôi nếu đó là thư viện BAC với kích thước DNA gắn vào vectơ lớn hơn 100 kb (Gale 2002).

Người ta còn dự tính sẽ khai thác bộ sưu tập EST (những chuồi ký tự của gen đã được chuyến mã), một bản đồ so sánh, và một quần thế có tên gọi chuyên môn là “knockout populations”. Những EST thường là những sưu tập từ các mô thực vật bị stress, hoặc chưa bị stress. Đối với bản đồ có tính chất so sánh, người ta sẽ sắp xếp những nhiễm sắc thể có tính chất đồng dạng theo một “model” chuyên biệt nào đó. Đối với quần thể “knockout”, người ta sẽ tạo ra thông qua thư viện DNA đột biến, hay thư viện DNA bị mất đoạn, trong đó các gen như vậy trở nên không bình thường một cách ngẫu nhiên. Hiện nay, người ta nghiên cứu T- DNA được đánh dấu, hay transposon được đánh dấu (Bửu 2002), kết qủa được minh họa trong trường hợp cây lúa và cây Arabidopsis thaliana.

Lĩnh vực genomics của cây lúa, lúa mì và cây ngô hiện rất phong phú. Bên cạnh đó, CGIAR cũng khuyến khích phát triển nghiên cứu genome của cây kê, cao lương, đậu đồ, khoai mì

1-11-2. Kỹ thuật cloning các gen

Có nhiều cách để clone những gen mục tiêu, tuy nhiên, chúng ta phải nhớ rằng nếu mọi hoạt động xác định một vị trí nào đó trên bản đồ của một gen mục tiêu điều khiển tính chống chịu stress, nhưng chúng ta chưa ghi nhận một chức năng cụ thế của nó, thì tiến trình phân lập gen ứng cử viên này sẽ gặp trở ngại, sự thế hiện gen trong một điều kiện nhất định sẽ không được hiếu rõ (nhất là tương tác của tính trạng chống chịu với môi trường). Chiến lược nghiên cứu “map-based cloning” đã được đề xuất. Người ta xếp hạng cây trồng theo quan hệ huyết thống và xác định những bản đồ có tính chất “kiểu mẫu” (model maps) chứa đựng các gen ứng cử viên định vị trong khư vực dự đoán, trên cơ sở phân tích QTL. Với tần suất khoảng 30 gen trên một đơn vị bản đồ của cây lúa, người ta sẽ có thể định vị một cách chi tiết hơn những QTL, mà những sàng lọc như vậy làm cho QTL được xem xét như những gen chủ lực trong di truyền Mendel. Do đó, có một thuật ngữ mới dùng để diễn tả sự kiện này được gọi là “Mendelisation”, trong một quần thể phân ly rất lớn. Những “BAC contig” chồng lấp nhau tạo ra series của những clone. Thông qua bản đồ vật lý và thông qua chuỗi ký tự có tính chất “model”, các series của clone mong muốn có thế được tạo ra.

Một kỹ thuật mới về “map-based cloning” được phát triển gần đây, đó là kỹ thuật “deletion tilling”. Kỹ thuật này bao gồm: (1) tạo ra số lượng phân tử bị mất đoạn, trong đó có gen mục tiêu, (2) sử dụng đoạn phân tử chồng lấp tối thiểu để xác định gen ứng cử viên trong khi mô phỏng (trường hợp genome lúa mì). Phương pháp này có thuận lợi là không cần biến dị của gen mục tiêu hoặc vùng kế cận của nó. Hiện nay CGIAR rất chú ý đến việc ứng dụng của kỹ thuật “tilling”
1-11-3. Microarray

Những gen ứng cử viên cũng có thể được thể hiện trong kỹ thuật phân tích microarray. Những gen nhạy cảm với stress, sự thế hiện gen xảy ra khi bị stress, trở nên rất lý tường cho nghiên cứu microarray. Thí nghiệm có tính chất điển hình về array của EST với RNA được ly trích trong mô cây bị tốn thương do stress, và mô cây không bị stress, đã được thiết kế để tìm hiểu về hiệu qủa của phân tích microarray. Người ta dự đoán có khoảng 25.000 gen trong genome cây Arabidopsis và 50.000 gen trong genome cây lúa sẽ được phát hiện đầy đủ trong một tương lai gần (Gale 2002). Microarray được hình thành từ bộ sưu tập EST từ thư viện cDNA, hoặc cDNA được sưu tập trên mô bị stress (do khô hạn, mặn, thiếu lân, độ độc nhôm, v.v...). Thí dụ trong cây lúa, 10% gen sẽ điều tiết “up” hoặc “down” trong vòng 1 giờ sau khi chúng bị xử lý trong môi trường mặn (Kawasaki và ctv. 2001).

Người ta sẽ phát triển công nghệ tạo các "microarray" hay "gene chips" trong nghiên cứu genome về chức năng. Những chips sinh học này rất hữu dụng trong tương lai gần để tìm ra những gen mục tiêu có tính chất ứng cử viên (candidate genes) đối với từng tính trạng mong muốn. Đây là bước đột phá có tính chất lịch sử trong qúa trình phát triển ngành di truyền phân tử của loài người. Nhiều dòng đột biến mất đoạn, dòng du nhập gen cho năng suất cao, có thế trồng ở nơi thiếu nước. Nhiều dòng thể hiện tính chống chịu hạn và mặn rất tốt. Những nghiên cứu về chức năng như vậy cho phép chúng ta hiểu rõ hơn: làm thể nào cây lúa có thể thích ứng với các stress, tìm ra các gen hữu ích cho công tác lai tạo giống lúa. Theo Tiến sĩ Leung, có hơn 100 gen giúp cây lúa kiểm soát tính kháng bệnh hại đã được tìm thấy để tạo ra giống lúa kháng bệnh tốt hơn. Kỹ thuật mới về "microarray" bao gồm một sự tập trung khoảng 20.000 gen trên một "slide". Người ta còn gọi đó là "chip" đóng vai trò như một "sensor" để tìm ra những thông tin di truyền cần thiết. Phương pháp này cho phép chúng ta có

thể lai cùng một lúc với rất nhiều "probe". "Probe" là những chuỗi ký tự của cDNA, có nguồn gốc từ các gen chống chịu với mức độ stress khác nhau. Phân tử rnRNA đối với tính trạng chống chịu stress nào đó được chuyển mã ngược thành cDNA. Phân tử cDNA này được dùng để lai với "microarray", sau đó người ta xác định những "clone" dương tính. Thông qua nhiều giai đoạn phát triến, sau qúa trình bình thường hóa, người ta phải đảm bảo rằng những chuồi ký tự này đồng nhất, sẵn sàng được xác định trên slide hoặc trên màng. Chip sinh học này có thể được đóng hoặc mở khi cây ở điều kiện bình thường hoặc bị stress. Phương pháp này không chỉ xác định gen ứng cử viên mà còn tìm hiểu cả qúa trình thể hiện gen trong điều kiện bị stress

1-11-4. Quần thể “knockout”

Người ta đã thực hiện nhiều quần thể khác nhau được đánh dấu bởi transposon hoặc T-DNA để phục vụ cho nghiên cứu genome cây lúa và cây Arabidopsis. Những quần thể như vậy còn được gọi với thuật ngữ là “gene machines”. Những máy gen này với hình thức di truyền bị đảo ngược sẽ giúp chúng ta xác định bất cứ một gen nào đó rất cần cho mục tiêu nghiên cứu, trên cơ sở gen bị đột biến xen đoạn, hoặc gen nhảy. Những dòng trong quần thế “knockout” có thể được nghiên cứu theo một kiểu hình có quan hệ với chức năng của gen mục tiêu. Gần đây, người ta phát triển một phương pháp mới, đó là TILLING, thuật ngữ này được viết tắt từ chữ “targeted induced local lesions in genomes”. Phương pháp TILLING giúp chúng ta tạo ra những “knockout” mục tiêu và từ đó sáng tạo ra các series có tính chất alen với nhau của bất cứ gen nào đó cần nghiên cứu. Những quần thể TILL1NG hiện đã được thành lập để phục vụ cho nghiên cứu genome cây lúa và cây Arabidopsis.

Quần thể đột biến do hóa chất hay phóng xạ của cây trồng trở thành một yêu cầu cần thiết trong nghiên cứu di truyền trong tương lai. Những dòng chống chịu với stress như khô hạn, mặn, nhiệt độ lạnh, ngập úng đều có thể được xác định. Thử thách trước mắt đối với các nhà khoa học là liên kết kiểu hình với gen mất đoạn, ở đó chuỗi mã di truyền của gen ứng cử viên được xem như mốc khởi động rất tốt

1-11-5. Chuyn nạp gen

Kỹ thuật chuyển nạp gen hiện đã trở nên thông dụng cho hầu hết các loài cây trồng, nhưng hiệu qủa của nó vẫn còn là vấn đề cần được tiếp tục nghiên cứu cải tiến. Đặc biệt đối với cây một lá mầm, hiệu qủa chuyển nạp gen đạt được khó hơn so với cây hai lá mầm. Những cố gắng đầu tiên sẽ là công việc kiến trúc alen của gen mục tiêu gắn với promoter có chức năng kiến tạo, thí dụ CaMV35S trong qúa trình chuyến nạp gen. Những xét nghiệm về “transgenic” đầu tiên sẽ là nội dung bao gồm kiến trúc dây “antisense”, sao cho thông tin được thể hiện như mong muốn. Những xét nghiệm sau cùng sẽ là xem xét khả năng của những alen đặc biệt của gen trong kiến trúc tương thích với những promoter thể hiện chức năng hoạt động ở mô, thí dụ mô rễ, mô hạt ở trong một giai đoạn phát triển cực trọng nào đó, nhằm đạt được yêu cầu chống chịu stress theo mục tiêu đề ra từ ban đầu.

Thiết kế theo mô hình cây mẫu

Genome cây Arabidopsis thaliana có thể được xem như mô hình cây làm mẫu (model species) trong nghiên cứu sinh học phân tử về tính chống chịu đối với stress không phải sinh học

Tính trạng chống chịu lạnh được điều khiển bởi CBF1, một “regulator” của genome cây Arabidopsis. Sự thể hiện gen CBF1 làm kích hoạt mức độ hoạt động của hàng loạt các gen điều khiển tính chống chịu lạnh, bảo vệ cây chống lại sự thiệt hại do giá lạnh

Một yểu tố có tính chất giải mã khác là DREB1A điều tiết sự thế hiện hàng loạt các gen chống chịu với stress có trong genome cây Arabidopsis. Sự thể hiện DREB1A làm kích hoạt các gen chống chịu khô hạn, gen chống chịu mặn và chống chịu lạnh. Khi DREB1A được khởi động bởi CaMV35S, sự phát triển bình thường của cây trong điều kiện không có stress bị đình trệ một cách nghiêm trọng (Gale 2002), nhưng khi nó được đặt trong môi trường có stress, tính trạng chống chịu sẽ được cải tiến rất tốt.

Thu thập qũy gen - kỹ thuật “allele mining” và di truyền phi hợp

Việc thu thập ngân hàng gen, đa dạng nguồn vật liệu có gen điều khiến tính chống chịu với stress là một chiến lược lâu dài đế cải tiến cây trồng.

Người ta rất chú ý một phương pháp có tên gọi là khai thác mỏ alen (allele mining). Phương pháp này bao gồm qúa trình thực hiện PCR và đọc chuồi ký tự DNA (sequencing) của hàng loạt các gen được tìm thấy trong giống cây trồng bản địa, trong các loài hoang dại có quan hệ huyết thống gần gủi. Biến dị trong chuỗi mã có thế cho chúng ta một kết qủa tương ứng với tính chống chịu stress của mẫu giống, qua đó, chúng ta có thế xác nhận alen nào là tốt nhất cho những thí nghiệm về chuyến nạp gen sau này.

Người ta cũng đang cố gắng tiếp cận một phương pháp được gọi là “di truyền phối hợp” (association genetics). Đó là một thuật ngữ phát triển từ nội dung thu thập qũy gen mà CGIAR đề nghị các nhà khoa học nên khai thác. Lĩnh vực mới của khoa học này, trên cơ sở thành tựu di truyền học của con người với mức độ phân tích cao trong những quần thế phân ly vô cùng to lớn, đã không cho phép chúng ta thực hiện nội dung như vậy. Người ta bèn nghĩ đến các gen được phối hợp với một tính trạng nào đó, những gen này được xác định thông qua tương quan giữa kiểu hình với những alen chuyên biệt ở mức độ marker phân tử liên kết chặt chẽ với gen. Trong thực vật, đó là sự thể hiện tổng quát của những mẫu giống được sưu tập trong ngân hàng gen đối với hiện tượng biến dị tại các loci của marker, phân bố rải rác trong genome (đánh giá kiểu gen). Người ta phát triển nội dung này bằng cách tìm mối tương quan giữa những kiểu gen trong điều kiện stress với hiện tượng không cân bằng của alen trong genome (allele dis-equilibrium). Đây là một ngành khoa học trẻ trong lĩnh vực sinh học thực vật, có tiềm năng rất lớn đế khám phá ra các gen mới

Ngành học mới về sinh học phân tử của thực vật đang bắt đầu phát huy tác dụng trong lĩnh vực chọn tạo giống cây trồng chống chịu với những thiệt hại không phải sinh học. Genome học có tính chất so sánh là một ví dụ, nó rất có triển vọng để phát triển nhanh hơn nữa (Gale 2002).

Mục tiêu của Nhóm Tư vấn về Nghiên Cứu Nông Nghiệp Quốc Tế (CGIAR) phải đạt là tạo ra các giống cây trồng phát triển rộng khắp trên đất có khả năng trồng trọt, năng suất cao ngay cả trên đất có vấn đề, vùng khí hậu bất thuận, đảm bảo yêu cầu an toàn lương thực, đặc biệt cho người nghèo trên toàn thế giới

Trong chương trình cải tiến giống cây trồng, người ta phấn đấu áp dụng những thành tựu mới nhất của khoa học, với những công cụ tốt nhất để giải quyết các vấn đề khác nhau, đó là:

              Gen mới và gen cải tiến trong trường hợp tính chống chịu với stress không phải sinh học

              Công cụ cải tiến giống có hiệu qủa cao trong khi đưa các gen này vào giống cây trồng mới, thí dụ phương tiện thanh lọc giống tốt hơn, marker phân tử liên kết với tính trạng mục tiêu chặt chẽ hơn, qui trình chuyến nạp gen hiệu qủa hơn

              Chiến lược cải tiến giống cây trồng đối với tính chống chịu nào đó phải được thể hiện trong chương trình trọng điểm quốc gia

              Kiến thức cơ bản về sinh lý thực vật, sinh hóa đối với cơ chế chống chịu stress phải được cải tiến không ngừng

1-12. PHÂN TÍCH QTL

Phần lớn những tính trạng chống chịu với điều kiện bất lợi do môi trường là tính trạng di truyền số lượng. Do đó, phân tích những loci của tính trạng số lượng QTL (quantitative trait locus-số ít, quantitative trait loci-số nhiều) đã được phát triển với nhiều mô hình nhằm đáp ứng yêu cầu nghiên cứu (Liu 1998)

Tính trạng số lượng được định nghĩa một cách kinh điển là tính trạng có phân bố liên tục (continuous distribution), tính trạng này được điều khiển bởi nhiều gen, mỗi gen có một ảnh hưởng nhỏ đối với tính trạng mục tiêu.

Bản đồ QTL bao gồm kiến trúc của những bản đồ genome và tìm kiếm mối quan hệ giữa tính trạng với những marker đa hình, minh chứng một QTL định vị kề cận những marker. Di truyền tính trạng số lượng rất phức tạp do với tính trạng đơn gen trong di truyền Mendel, bởi vì nó còn chịu sự tác động rất mạnh của môi trường.

Danh sách những tài liệu tham khả về bản đồ QTL hiện nay khá phong phú, đặc biệt là công trình của

Lander và Schork (1994). Lander và Zheng (1994). Stuber và ctv. (1992). Tanksley (1993). Weller (1998)

Những tác giả đã sử dụng phép thử T (t-test), phương trình tuyến tính, phương trình đa tuyến, phương trình phi tuyến tính và phép thử cách quãng để xây dựng mô hình.

Thành tựu nổi bậc là phần mềm MAPMARKER/QTL của Lander và ctv (1987) QTLSTAT của Liu và Knapp (1992), QGENE của Tanksley và Nelson (1996) đã giúp cho việc nghiên cứu phân tích QTL được diễn giải một cách rõ ràng hơn

Bảng 1: Danh mục những “Computer software” liên quan đến phân tích và lập bản đồ QTL

Phần mềm
Nguồn
MAPMARKER/QTL
QTLSTAT
LINKAGE
PGRI
QTL cartographer MAPQTL Map Manager QT ỌGENE
Lander và ctv. 1987, Lander & Bostein 1989 Knapp và ctv. 1992 Tenvilliger & Ott 1994 Liu 1998
Basten, Weir và Zeng 1996
van Ooijen & Maliepard 1996
Manly & Cudmore 1996
Tanksley & Nelson 1996, Nelson 1997


1-12-1. Những mô hình về di truyền số lưọng

1-12-1-1. Mô hình QTL đơn (single-QTL)

Một trong những mục tiêu của bản đồ QTL là tìm kiếm trong toàn bộ genome nơi định vị của gen mục tiêu thông qua một trắc nghiệm giả định đối với một marker đơn hoặc một vị trí nhất định, sau đó, người ta sẽ xây dựng nó một model có tính chất “đa QTL" (multiple QTL)

Như vậy, ảnh hưởng tính cộng (a) và ảnh hưởng tính trội (d) đã được biểu thị trong bảng 2 trong mô hình quần thể phân ly F2, và giá trị di truyền trong quần thể hồi giao, với các ảnh hưởng như sau: ảnh hưởng chính, ảnh hưởng tương tác 2 chiều, 3 chiều, 4 chiều và tương tác “i-way’”. Cuối cùng là ảnh hưởng tổng quát.


Bảng 2: Mô hình QTL đơn trong quần thể hồi giao (backcross) và ĩ2, nQQ, nọq, và nqq biểu thị kiểu gen của QQ, Qq, và qq

Mô hình
Kiểu gen
Giá trị
Phương sai
Hồi giao (Qq X QQ)
QQ
Qq
Ảnh hưởng di truyền
Pi
P2
g = 0,5 (pi - p2)
ơ-
2
ơ
ơ2(l / nQQ + 1 /nọq)/4
F2
(Qq X Qq)
QQ
Qq
qq
Anh hưởng tính cộng Ảnh hưởng tính trội
IU
p2
P3
a = 0,5 (pi - p3) d = 0,5 (2p2-pi -P3)
2
ơ
ơ2
2
ơ
ơ2(l / nQQ + 1 /nqq)/ 4 ơ2( 1 / nQQ + 4nQq + l/nqq)/ 4

1-12-1-2. Mô hình “multiple-locus ”

Mô hình di truyền tính trạng số lượng được định nghĩa theo số gen, các ảnh hưởng của gen, tần suất gen, tương tác giữa các gen, tương tác giữa gen X môi trường.

Giả định có n gen điều khiến một tính trạng số lượng nào đó. Hãy xem xét quần thế F2, những ảnh hưởng di truyền có thế xảy ra: ảnh hưởng chính, ảnh hưởng tương tác 2 chiều, 3 chiều, 4 chiều và tương tác “i-way”.  Cuối cùng là ảnh hường tổng quát.

Bảng 3: Các hệ số thuộc biến số dummy và ảnh hưởng của gen

Kiểu gen QTL
Tần suất
C1
C2
Ảnh hưởng
AA
1
1/2
a + d/2
Aa
./?
0
-1/2
- d/2
Aa
-1
1/2
-a + d/2

1-12-2. Phương pháp phân tích marker đơn (SMA = single marker analysis)

Ứng dụng nguyên tắc trong phân tích liên kết gen, chúng ta có thế xác định cách thức của tính chất di truyền marker và vị trí mà nó hiện diện trong genome

              Gen điều khiển tính trạng số lượng có thể được lập bản đồ giống như bản đồ di truyền của marker
              Khi những marker phủ trên một đoạn khá lớn của genome, nó sẽ tạo ra khả năng rất tốt đế chúng ta tìm ra những gen điều khiến tính trạng số lượng
              Nếu các gen và các marker đồng phân ly trong một quần thể di truyền, tương quan liên kết giữa chúng có thể được phát hiện
Phương pháp phân tích marker đơn là một bước khởi đầu, không những chỉ ra bản đồ QTL, mà còn phân tích được cụ thể các số liệu
Những khám phá đầu tiên của mô hình được căn cứ trên hàm tuyến tính

Yj = p + f(markerj) + Sj

Trong đó Yj là giá trị của tính trạng đối với cá thể thứ jth, và u là giá trị trung bình của quần thể, f(markerj) là hàm số của kiểu gen marker, Ej là sai số

Thí dụ như một gen Q định vị gần marker A và tính trạng mục tiêu được điều khiển bởi gen Q có thể được mô phỏng thông qua marker A

Yj = u + f(A) + Ej

Bài toán là giải đáp “xác suất tin cậy được” của f (A) có chứa giá trị di truyền của kiểu gen Q và giá trị liên kết giữa A và Q

Phương pháp SMA có thể được thực hiện dưới dạng

              phép thử t đơn giản
              phân tích phương sai
              phương trình tuyến tính
              phép thử tỉ lệ mô phỏng và ước đoán mô phỏng tối đa

Phương pháp SMA rất đơn giản trong phân tích số liệu và thực hiện các bước tính toán, người ta có thể sử dụng phần mềm SAS để thiết lập mô hình.

1-12-2-1. SMA trên quần thê hồi giao

1-12-2-2. Kết hợp hiện tượng phân ly của QTL và marker

Bảng 4: Tần suất kiểu gen QTL hi vọng định vị kế cận marker trong quần thể hồi giao, không có hiện tượng quấn chéo (Liu 1998)

Kiểu gen marker
Giá trị quan sát
Tần suất biên
Kiểu gen ỌTL
Giá trị lý thuyết
QQ
Qq
Tần suất
kết hợp
AA
ni
0,5
0,5 (1-r)
0,5 r
Aa
n2
0,5
0,5 r
0,5 (1-r)
Điều kiện kết hợp
AA
ni
0,5
1-r
r
(l-r)ịii + ịX2
Aa
n2
0,5
r
1-r
rpi + (l-r)p2

1-12-2-3. Phép thừ t đon giản trong quần thê hôi giao

Bảng 5: Phân tích phương sai SMA trong quần thể hồi giao với N là qui mô quần thể con lai, b là số lần lập lại và c là hệ số dự đoán c = N - [ni2 + n22] / N

Nguồn
df
MS
MS lý thuyết
F-test
Di truyền tống quát
N-l
MSG
QTL
1
MSQ
ơe2 +bơ2G(OTL) + bcg2
MSQ/MSG(Q)
G(QTL)
N-2
MSG(Q)
ơe2 + bơ2G(OTL)
Số cặn
N(b-l)
MSE
2
ơe

p, - p2

tQ =                                     

[s2 [ 1/m + l/n2) ]1/2

1-12-2-4. Phân tích phương sai trong quần thế hồi giao Bảng 6: Phân tích phương sai SMA điển hình

Nguồn
df
MS
E(MS)
Di truyền
N-l
MSG
ơe2 +ba2o
Marker
1
MSM
ơe2 + bfơ2G(0TL)+4r( 1 -r)a2l+bc( 1 -2r)2.a2
G(marker)
N-2
MSG(M)
ơc2 + b[ơ2G(OTL)+4r( l-r)a2]
Số cặn
N(b-l)
MSE
2
ơe

Phép thử F = MSM / MSG(M)

1-12-2-5. Mô phỏng trong quẩn thế hồi giao


1-12-5. Khả năng giải thích về thống kê sinh học của bản đồ QTL

Những yếu tố sau đây có thể ảnh hưởng đến bản đồ QTL:

              Số gen điều khiển tính trạng và vị trí của nó trong genome
              Sự phân bố của các ảnh hưởng di truyền và cách thức tương tác giữa các gen
              Hệ số di truyền của tính trạng mục tiêu
              Số gen phân ly trong quần thế lập bản đồ
              Loại quần thể con lai và độ lớn của quần thể
              Mật độ của bản đồ liên kết gen, số marker phủ trên genome
              Phương pháp thống kê được ứng dụng, mức độ có ý nghĩa trong phân tích

Trong phương pháp SMA, khả năng thống kê được dựa trên phép thử t (t-test), phân tích phương sai và trắc nghiệm mô phỏng theo dạng tuyến tính

Trong phương pháp bản đồ cách quãng (IMA: interval mapping analysis), khả năng thống kê dựa trên một hệ phương trình tuyến tính với con lai hồi giao, đối thuyết Ho = |ii- |Ì2 = 0 (không có ảnh hưởng QTL trong quãng), trắc nghiệm mô phỏng thông qua giá trị “log likelihood”

Trong phương pháp “multiple QTL”, khả năng thống kê dựa trên lý thuyết mỗi gen là tập họp của {pi, P2, p3,.. Pq} ở mức độ tin cậy a, nhằm phát hiện được ít nhất qe QTL, trong đó, qe < qi (Liu 1998)

UPDATE NEWS

NEW WORDS